Bugs

Bug in Mathematica 8

Bug in Mathematica 8

Postby satyakti » Fri Jan 21, 2011 11:13 am
Hi Everybody

I have problem with Mathematica 8 where this syntax was running well in Mathematica 5. This syntax is :

variables={x,u,q};
sol=Solve[RelativeRates==0,{x,u,q}]//FullSimplify;
sol1=sol[[1]]
{xsol,usol,qsol}=variables/.sol1;

and the solution from Mathematica 5 is:
{q->((-1+\[Alpha]K) (\[Alpha]K-\[Sigma]) \[CapitalPsi]^2+B (\[Alpha]K-\[Gamma]) (\[Rho]+(\[Alpha]K-\[Sigma]) \[CapitalPsi]))/(\[Alpha]K (B (\[Alpha]K-\[Gamma])+(\[Alpha]K-\[Sigma]) \[CapitalPsi])),x->((A \[Alpha]K (\[Rho]+\[CapitalPsi]-\[Sigma] \[CapitalPsi]) ((\[Rho]+\[CapitalPsi]-\[Sigma] \[CapitalPsi])/(B \[Alpha]K-B \[Gamma]+\[Alpha]K \[CapitalPsi]-\[Sigma] \[CapitalPsi]))^-\[Alpha]K)/(B (\[Alpha]K-\[Gamma]) (\[Rho]-\[Sigma] \[CapitalPsi])+\[CapitalPsi] (\[Sigma] \[CapitalPsi]+\[Alpha]K (\[Rho]-\[Sigma] \[CapitalPsi]))))^(1/(1-\[Alpha]K)),u->(\[Rho]+\[CapitalPsi]-\[Sigma] \[CapitalPsi])/(B \[Alpha]K-B \[Gamma]+\[Alpha]K \[CapitalPsi]-\[Sigma] \[CapitalPsi])}

and it's working well
but when I ran in Mathematica V8 the result show:

During evaluation of In[124]:= Solve::nsmet: This system cannot be solved with the methods available to Solve. >>

Out[126]= {-q +
A u^(1 - \[Alpha]K) x^(-1 + \[Alpha]K) + \[CapitalPsi] -
u \[CapitalPsi], (-q \[Alpha]K +
B u (\[Alpha]K - \[Gamma]) + (-1 + \[Alpha]K) \[CapitalPsi])/\
\[Alpha]K,
q + A u^(1 - \[Alpha]K)
x^(-1 + \[Alpha]K) (-1 + \[Alpha]K/\[Rho]) - \[Rho]/\[Sigma]} == 0

During evaluation of In[124]:= ReplaceAll::reps: {{-q+A u^(1+Times[<<2>>]) x^(-1+\[Alpha]K)+\[CapitalPsi]-u \[CapitalPsi],(-q \[Alpha]K+B u (\[Alpha]K+Times[<<2>>])+(-1+\[Alpha]K) \[CapitalPsi])/\[Alpha]K,q+A u^(1+Times[<<2>>]) x^(-1+\[Alpha]K) (-1+\[Alpha]K Power[<<2>>])-\[Rho]/\[Sigma]}==0} is neither a list of replacement rules nor a valid dispatch table, and so cannot be used for replacing. >>

During evaluation of In[124]:= Set::shape: Lists {xsol,usol,qsol} and {x,u,q}/.{-q+A u^(1+Times[<<2>>]) x^(-1+\[Alpha]K)+\[CapitalPsi]-u \[CapitalPsi],(-q \[Alpha]K+B u (\[Alpha]K+Times[<<2>>])+(-1+\[Alpha]K) \[CapitalPsi])/\[Alpha]K,q+A u^(1+Times[<<2>>]) x^(-1+\[Alpha]K) (-1+\[Alpha]K Power[<<2>>])-\[Rho]/\[Sigma]}==0 are not the same shape. >>


Does anybody could give me a hints to solve my problem.
Thanks in advance.

Yayan Satyakti
satyakti
 
Posts: 1
Joined: Fri Jan 21, 2011 11:02 am

Re: Bug in Mathematica 8

Postby briangilbert » Sun Mar 13, 2011 12:28 pm
You are posting in the wrong place. I suggest you copy and paste this to a Mathematica feedback such as
http://reference.wolfram.com/common/cgi ... tination=3
briangilbert
 
Posts: 1158
Joined: Mon May 18, 2009 5:30 pm
Location: London England

Who is online

Users browsing this forum: No registered users and 1 guest